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Abstract

In the difference formulation for the transport of thermally emitted photons,
the photon intensity is defined relative to a reference field, the black body at the
local material temperature. This choice of reference field removes the cancellation
between thermal emission and absorption that is responsible for noise in the Monte
Carlo solution of thick systems, but introduces time and space derivative source
terms that can not be determined until the end of the time step. It can also lead
to noise induced crashes under certain conditions where the real physical photon
intensity differs strongly from a black body at the local material temperature.

In this report, we consider a difference formulation relative to the material tem-
perature at the beginning of the time step, and in the situations where the radiation
intensity more closely follows a temperature other than the local material temper-
ature, that temperature. The result is a method where iterative solution of the
material energy equation is efficient and noise induced crashes are avoided. To sup-
port our contention that the resulting generalized subtraction scheme is robust, and
therefore suitable for practical use, we perform a stability analysis in the thick limit
where instabilities usually occur.

Key words: difference formulation, radiation transport, implicit Monte Carlo

⋆ This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
∗ Corresponding Author:

Email address: luu5@llnl.gov (Thomas Luu).

Preprint submitted to Elsevier Science 25 July 2008



1 Introduction

Radiation transport in media is described by the Boltzmann equation for pho-
tons coupled to the material energy equation, which in slab geometry under
the assumptions of no scattering, no material motion, and local thermody-
namic equilibrium (LTE) for the material is given by

(

1

c

∂

∂t
+ µ

∂

∂x
+ σ

)

I =σB , (1)

∂Emat

∂t
=2π

∫

dνdµ σ(I − B) . (2)

Here I represents the intensity field, 1/σ the absorption length for photons,
Emat the energy density of the material, ν the frequency, µ the direction cosine
of photon travel, and B the blackbody field at the material temperature given
by

B =
2hν3

c2

1

ehν/kTmat − 1
. (3)

The black body emission function, Eq. (3), can be expressed in terms of a
“reduced” frequency distribution function, b(ν, T ),

B(ν, T ) =
caT 4

4π
b(ν, T ) , (4)

where a is the radiation constant. The advantages of using the reduced fre-
quency distribution function are that the strong temperature dependence of
thermal emission is factored out by the T 4 term, and that its frequency integral
is independent of temperature,

∫

∞

0
dν b(ν, T ) = 1 . (5)

There is an extensive collection of numerical algorithms that have been de-
veloped for solving the coupled equations above after discretization in space
and time (see [1] and references within for a review of existing algorithms). Of
recent interest are transport algorithms that obtain the correct diffusion limit
in the appropriate regime [2–5]. The particular discretizations employed in
these algorithms provide accurate solutions as the physical system approaches
the diffusion limit, without having to shrink the zone sizes to scales smaller
than the photon mean free path, 1/σ, or the time steps shorter than the mean
free time, 1/σc, of a photon, as long as variations in the material physical
properties are resolved.

The difference formulation employed in [5–8] defined the difference field as
D = I − B, where B is the black-body radiation field at the material temper-
ature at each point in space and time, with the exception of special treatment
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of boundary conditions that reduced Monte Carlo noise. In terms of the dif-
ference field, D, Eqs. (1) and (2) become

(

1

c

∂

∂t
+ µ

∂

∂x
+ σ

)

D =−
(

1

c

∂

∂t
+ µ

∂

∂x

)

B , (6)

∂Emat

∂t
=2π

∫

dνdµ σD . (7)

Note that in this formulation, the original σB source of Eq. (1) is replaced
with derivative sources

−
(

1

c

∂

∂t
+ µ

∂

∂x

)

B . (8)

The vices and virtues of this particular transformation are discussed in detail
in [6,7].

The difference formulation is not restricted to using the black body field cor-
responding to the local material temperature, B, as the reference field. Any
choice for the reference field, B, may be used and the resulting formulation of
the transport equation will still be rigorously equivalent to the original one. If
the black body corresponding to the material temperature is used, the Monte
Carlo noise arising from the near cancellation of thermal emission and absorp-
tion, σ(I − B) in Eq. (2), that occurs in optically thick regions is removed.
Alternative choices for the reference field might sacrifice some of the advan-
tage gained by completely removing this term in order to gain an advantage
with respect to other sources of noise in a Monte Carlo implementation of the
transport algorithm [9].

In this report, we consider several generalizations of the difference formula-
tion that pose a significant advantage for practical problems. The difference
formulation is generalized by defining D = I − B where B is the black body
function at some judiciously chosen temperature. In this case the transport
and energy equations become

(

1

c

∂

∂t
+ µ

∂

∂x
+ σ

)

D =σ(B − B) −
(

1

c

∂

∂t
+ µ

∂

∂x

)

B , (9)

∂Emat

∂t
=2π

∫

dνdµ σD − 2π
∫

dνdµ σ(B − B) . (10)

Obviously, if B = B one recovers Eqs. (6) and (7). When B = 0, one recovers
Eqs. (1) and (2).

There are several motivations for using a generalization of the difference for-
mulation. If B is known at the beginning of the time step, the derivative
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sources in Eq (9),

−
(

1

c

∂

∂t
+ µ

∂

∂x

)

B , (11)

are themselves known. This makes these sources easier to sample in compli-
cated geometries, reduces the cost of scoring the particles, and reduces the
complexity of the nonlinear system that represents the energy equation. In
this case, the only source that contains unknown factors is the remainder
source

σ(B − B) , (12)

which, aside from any complicated frequency dependence of σ, is relatively
simple to sample as it is isotropic. If B is the value of B at the beginning
of the time step and the problem is slowly varying, the unknown remainder
source term, σ(B −B), is small and can be handled as a perturbation on the
otherwise explicit solution for the transport equation, making it amenable to
iterative solution techniques. In particular, we have found a solution strategy
that involves no matrix inversions, and only a very few matrix multiplica-
tions. We demonstrate the solution efficiency, accuracy, and stability for this
technique in this paper.

Another motivation for a generalized difference formulation comes from the
fact that there can be regions of a problem where the radiation temperature
that corresponds to the radiation energy density is not close to the material
temperature. If the radiation and the material temperatures differ by a signif-
icant amount a Monte Carlo solution of Eqs. (6) and (7) will be intrinsically
noisy due to the large difference field. Such a scenario can occur, for example,
in problems that have both optically thick and thin regions that have signifi-
cantly different material temperatures. Because of weak coupling between the
radiation and material in the optically thin regions, the radiation temperature
in these regions is dominated by the material temperature in the adjacent op-
tically thick regions. Thus within the optically thin regions, a choice for B
that tracks the material temperature of the adjacent optically thick regions
produces a small difference field, D, and therefore lowers Monte Carlo noise.
In this paper, we will show a specific example of such a scenario and how this
modification to the reference field makes a significant improvement.

We perform stability analyses of the original difference formulation, and the
modified schemes presented in this paper, in the thick limit. In doing so we
derive stability criteria that enable us to accurately predict the failure of our
algorithms, where it occurs. In addition to being illuminating, these analyses
give confirmation of our experience with the robustness of the computational
methods we describe in this report.

The report is organized in the following manner: Section 2 explains our dis-
cretization schemes and describes our method of solving the equation for the
material energy. Where pertinent, it gives sample calculations that help to
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show the differences between the original difference formulation and the gen-
eralized subtraction method described here. Section 3 gives specific examples
that show the superiority of this new method when compared to the original
difference formulation. Section 4 describes our stability analysis. We conclude
in Section 5.

2 Discretization scheme and Monte Carlo energy weights

In order to solve the time dependent transport problem posed in Eqs. (9)
and (10), with suitable boundary conditions, the problem domain is divided
into N zones, enumerated by 1 ≤ i < N , and the transport equation is
“solved” by working out the total energy of the source terms and emitting
it as Monte Carlo particles with appropriate coordinate distributions. Each
Monte Carlo particle carries an energy weight that decays exponentially as it
travels, losing energy to the material. The change in the material energy for
the time step, from t0 to t0 + ∆t, is accounted for in each zone by evaluating
the integrals in Eq. (10) over the time step, in each zone. These integrals
are evaluated by scoring Monte Carlo particles, track by track, along with
deterministic integrals that arise due to the fact that a B has been chosen
that does not completely cancel the thermal emission term, σB.

Stability of the time dependent solution requires implicit treatment of the
source terms, leading to some Monte Carlo particles with energy weights that
will not be known until the end of the time step. The Symbolic Implicit Monte
Carlo method [10] is used to account for the energy depositions from particles
with energy weights that will not be known until the end of the time step. The
energy equation, Eq. (10), becomes a nonlinear matrix equation in this scheme.
The solution of this matrix equation provides the material temperatures for
the end of the time step.

For the results shown in the paper, we use the interpolation method described
in [5], interpolating B between zone centers only for the space derivative source
term of Eq. (11). This spreads between the zone centers what would be a Dirac
delta function source at the interface between zones and provides the correct
flux between zones in steady state, in the diffusion limit. For brevity, we will
not repeat the detailed description of the interpolation method here. The
only modification is the simplification that the derivative sources are known,
simplifying sampling and scoring. The isotropic source term, σ(B −B), is the
only term with unknown particle energy weights. We will discuss how this
source term is sampled in what follows.

The Monte Carlo particles that are tracked through the time step, t0 to t0+∆t,
are composed of the census particles from the prior time step, particles that
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are born during the time step due to the source terms given by Eqs. (11)
and (12), and any source terms that arise from the boundary conditions for
the problem. As has become well known for implicit Monte Carlo transport of
thermally generated photons, and will be explored for a specific situation in
detail later in this paper, we need to use the unknown end of time step value
for B in our source terms if we are to obtain stable time dependent behavior.

2.1 Specific example of B = B(t0)

As an example of a known reference field, and its consequences on the energy
weights of Monte Carlo particles, consider the following expression for B,

B(t) = B(t0) (t0 ≤ t < t0 + ∆t) . (13)

Here B is a series of step functions in time; its value for the duration of the
time step, from t0 to t0 + ∆t, being the known value of B determined at the
end of the prior time step. By using B(t0) for B during the time step, the
source terms given by Eq. (11) are known, and as such do not contribute to
off-diagonal terms in the nonlinear system that must be solved in order to
resolve the change in material energy at the end of the time step.

With this definition of B, the frequency dependence of the explicit sources in
Eq. (11) can be factored out in the following manner,

(

1

c

∂

∂t
+ µ

∂

∂x

)

B =
4π

c

∂B

∂Φ

(

1

4π

∂Φ

∂t
+

µc

4π

∂Φ

∂x

)

. (14)

Here Φ(t) = aT 4(t0), (t0 ≤ t < t0 + ∆t), and ∂B/∂Φ represents a frequency
distribution since it is positive and satisfies [8]

4π

c

∫

∞

0
dν

∂B

∂Φ
= 1 . (15)

Efficient techniques have been developed for frequency sampling the integrand
in Eq. (15) [8]. We now continue our derivation of our Monte Carlo energy
weights using this definition of B. In later sections, we will give other examples
of Eq. (13) (though really just slight modifications of Eq. (13)) and where
necessary, will show how the derivations below are altered.

2.2 Monte Carlo sources

With the definition of B given by Eq. (13), and our discretization scheme laid
out, we can now evaluate the energy weight of the isotropic remainder source.
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During the time interval from t0 to t0 + ∆t, this source is given by

σ(Bi − Bi) = σ
4π

c

∂B

∂Φ

[

c

4π
(Φi(t0 + ∆t) − Φi(t0))

]

, (16)

where the subscript, i, is the zone index and we are assuming small changes
in Φ. (There are situations, such as the reference field choice of Section 3.2.3,
where the difference in Φ for the remainder source term is large. These require
the use of a finite difference approach for the construction of the frequency
distribution.) Integrating this within zone i, across the time step from t0 to
t0 + ∆t, over the range of direction cosines, and over all frequencies, the total
energy weight associated with this source is given by

∫ xi+1

xi

dx
∫ t0+∆t

t0
dt
∫ 1

−1
dµ
∫

dν σ(B − B) =

c ∆x ∆t

2π
〈σ〉i [Φi(t0 + ∆t) − Φi(t0)] , (17)

where

〈σ〉i =
4π

c

∫

dν σ
∂Bi

∂Φi

. (18)

The frequency distribution of this source is given by

4π

c
σ

∂Bi

∂Φi

/〈σ〉i . (19)

Obviously, for gray opacities 〈σ〉i = σ. The treatment of the material indepen-
dent source terms, Eq. (14), is similar to the treatment found in [7,8], except
that all of the source parameters are known in this case.

2.3 Newton-Raphson solution strategy for finding the material energy Emat

The unknowns, Φi(t0 + ∆t), are calculated by solving the material energy
equation, Eq. (10), at the end of the time step, t0 + ∆t. To accomplish this,
we first formally integrate Eq. (10) from t0 to t0 + ∆t to obtain the following
function,

f(x) = Emat(T (x, t0)) − Emat(T (x, t0 + ∆t))

+ 2π
∫ t0+∆t

t0
dt
∫

dν
∫

dµ σ(ν, T (x, t0))D(x, t; ν, µ)

+
∫ t0+∆t

t0
dt G(x, t) − 2π

∫ t0+∆t

t0
dt
∫

dν
∫

dµ σ(B − B) . (20)

We then integrate f(x) within each zone i, thereby defining the following
quantities,
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fi =
∫ xi+1

xi

dxf(x) ,

=Ei(t0) − Ei(t0 + ∆t) + (σD)i + Gi − (σ∆B)i , (21)

where

Ei =
∫ xi+1

xi

dxEmat(T ) = ∆xi
ρcν

a1/4
Φ

1/4
i , (22)

Gi =
∫ xi+1

xi

dxG(x) , (23)

(σ∆B)i = 2π
∫ xi+1

xi

dx
∫ t0+∆t

t0
dt
∫

dν
∫

dµ σ(B − B)

= c〈σ〉i∆x ∆t [Φi(t0 + ∆t) − Φi(t0)] , (24)

and

(σD)i =2π
∫ xi+1

xi

dx
∫ t0+∆t

t0
dt
∫

dν
∫

dµ σ(ν, T (x, t0))D(x, t; ν, µ)

=Ni

+
∑

j

(REM)j
i (Φj(t0 + ∆t) − Φj(t0))

+
∑

j

(DDT )j
i (Φj(t0) − Φj(t0 − ∆t))

+
∑

j

(DDX)j
i (Φj−1(t0) − Φj(t0)) . (25)

We have assumed that ρ Cv is constant within each zone, during the time
step. Ni is the contribution from the census particles to zone i from the prior
time step, (REM)j

i is the contribution to zone i due to remainder sources,
σ(Bj − Bj), emanating from zone j, (DDT )j

i is the contribution to zone i
from the time-derivative sources emanating from zone j, and (DDX)j

i is the
contribution to zone i from gradient sources from zone j. The dependence of
the time derivative sources on Φ(t0−∆t) arises from that fact that the reference
field is adjusted at the beginning of the time step. Note the nonlinearity of Φ
in Eq. (22). Our unknown Φj(t0 + ∆t) are found by demanding that fi = 0
for all i. We solve for these by way of a Newton-Raphson iteration algorithm.

We note that of all the terms appearing in Eq. (21), only the portion of (σD)i

due to remainder sources carries a dependence on the unknown Φj(t0 + ∆t)
for spatial zones j 6= i.
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2.4 Alternative iterative solution strategy for finding the material energy
Emat

The Newton-Raphson procedure described above converges quickly but re-
quires the solution of a linear system for the error at each step. The cost of
solving the linear system scales poorly as the number of zones in the problem
is increased. In order to address this problem, we have developed an alterna-
tive iterative solution strategy that is a variant of Jacobi iteration. We provide
a synopsis of Jacobi iteration here and then show how to solve the nonlinear
material energy equation using a similar strategy.

Assuming that one wants the solution to

A x = b , (26)

one decomposes the matrix A into A = D + L + U , where D is a diagonal
matrix, L is lower triangular and U is upper triangular. Rewriting, one obtains

D x = [b − (L + U)x] . (27)

If all of the diagonal matrix elements are nonzero, Eq. (27) can be used as a
prescription for iterating a solution,

xk+1 = D−1[b − (L + U)xk] . (28)

If the original matrix, A, is diagonally dominant this iterative process, known
as Jacobi iteration, converges.

Examining Eqs. (21) through (25), we see that Eq. (21) can be put in the form

NL (x1/4) + A x = b , (29)

where x is a vector of the unknowns, Φj(t0+∆t), (x1/4) is a vector of Φ
1/4
j (t0 + ∆t),

NL is a diagonal matrix and A can be decomposed into A = D + L + U .
Rewriting, and casting into a form similar to the case for Jacobi iteration, we
obtain

NL (x1/4)k+1 + D xk+1 = b − (L + U) xk . (30)

The left hand side is not a linear operator, so the refined solution is not
obtained by simple division. A particular root of a quartic equation, however,
produces each element of xk+1.

At the cost of a reduced rate of convergence, compared to Newton-Raphson
iteration, the solution of a linear system has been traded for a matrix-vector
multiply. The method can be extended to handle real material specific heats
that are functions of temperature. One could also explore similar nonlinear
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extensions of iterative linear system solvers that provide faster convergence
than Jacobi iteration.

3 Test Examples

We now give two examples that help show the improved efficacy of using a
reference field B different from that of the original difference formulation.
We show results where we have employed both the Newton-Raphson solution
strategy and the alternative iterative solution strategy of the material energy
equation.

When using the alternative iterative solution strategy, at each time step the
iteration ends when our prescribed figure of merit,

ε =

√

√

√

√

∑

i

(

Φnew
i − Φold

i

Φold
i

)2

, (31)

is less then some pre-defined value. Here the sum is over all zones and the
superscripts new and old refer to the current iterative value of Φi and the
previous value of Φi, respectively.

3.1 Marshak wave example

As an example of the particular reference field B given in Eq. (13), we have
run Marshak wave calculations using a gray σ = 200 cm−1, ρ Cv = .1 jerk/cm3

(1 jerk = 109 joules), and 80 equally spaced zones over a slab of length 5 cm,
giving 12.5 mean free paths per zone. A time step size of 0.01 sh, 1 sh =
10−8 seconds, is used in these calculations. The temperature at the left edge
of the problem is held at 1 keV and the temperature of the slab is initially
zero. Figure 1 shows our results at various times, where we have performed
our calculations using both the Newton-Raphson solution strategy (red) and
alternative iterative solution strategy (green) described in the previous section.
Our termination criterion for these runs is ε ≤ .01. Also shown for comparison
in black is the same problem using the original difference formulation (i.e.
B = B(t0 + ∆t)). Overall there is good agreement between the methods;
the main discrepancy occurs only at early times. The difference here can be
attributed to the fact that during the first time step of a run using the explicit
reference field of Eq. (13), the spatial gradient is much larger than in a fully
implicit treatment, leading to higher energy flow. Since the original difference
formulation is fully implicit, the smaller spatial gradient at the end of the time
step leads to a lower energy flow. This is apparent during the first few time
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(a) (b)

(c) (d)

Fig. 1. Comparison of Marshak wave calculations at various times using B = B(t0)
with the Newton-Raphson solution strategy (red) and alternative iterative solution
strategy (green) described in text. Also shown are results of the original difference
formulation, using B = B(t0 + ∆t) (black).

steps, as shown in Fig. 1, but the discrepancy evaporates once the problem
has run for a while. Suitable time step control removes this discrepancy.

In Fig. 2 (a) we show, as a function of time step, the number of iterations
needed before our termination criterion is met for various values of ε. The
range of time steps shown in Fig. 2 corresponds to the first 1/2 shake of the
problem described in the previous paragraph. A remarkable feature born out
in this figure is that, on average, the number of iterations for a given tolerance
remains the same, even at early time steps when the Marshak wave is just
penetrating the slab. In Fig. 2 (b) we plot the average number of iterations
needed for convergence as a function of tolerance. Note the logarithmic scale
used for the x-axis. The apparent linear behavior suggests power-law conver-
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Fig. 2. Panel (a) shows the number of iterations per time step for the first 50 time
steps for various values of the tolerance, ε. Panel (b) shows the average number of
iterations needed for convergence as a function of tolerance.

gence. For values of ε ≤ .01, our solutions are visibly indistinguishable. We
have made no attempts to accelerate the iteration process.
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3.2 Thin/Thick Interface example

As already alluded to in the introduction, there are instances when the refer-
ence field used in the original difference formulation is a poor approximation
for the actual radiation field, leading to noise induced crashes. We give a
specific example of such a scenario in what follows.

3.2.1 Problem setup

In this example the slab length is .1 cm, has ρ Cv = .3 jerk/cm3, has reflective
boundary conditions applied to the left edge, and is open to vacuum on the
right edge. There is an optically thin/thick interface at xb=.025 cm, where to
the left the gray opacity is σ = .003 cm−1, and to the right is σ = 300 cm−1.
With our zoning, this corresponds to ≈ 5×10−6 mean free paths per zone in the
thin region, and ≈ 0.5 mean free paths per zone in the thick region. Initially
the entire slab has temperature .05 keV. There is no initial radiation field,
but a constant volumetric heat source in the optically thin region heats the
material there at .95 jerks/cm3-shake. Because of the volumetric heat source,
and the poor coupling to the radiation field in the optically thin region, the
temperature of the slab in the optically thin region rises at an almost constant
rate.

3.2.2 Original difference formulation

For the original difference formulation, the reference field in the thin region
corresponds to the material temperature there. Physically, however, the radi-
ation temperature in the thin region is nowhere near the temperature of the
material there because the coupling between the material and the radiation
is weak; rather the radiation temperature in the thin region is almost equal
to the material temperature at the surface of the thick region where emission
and absorption are strong.

One expects the statistical fluctuations due to Monte Carlo transport to be
large in the optically thin region, because the actual radiation field deviates
significantly from a black body at the local material temperature. Figure 3
confirms this expectation. The temperature of the radiation field as measured
by its energy density, shown in red, fluctuates wildly, even at early times when
the difference between the material temperatures of the thick and thin regions
is small. As this difference increases, fluctuations in the material temperature
near the surface of the optically thick region, driven by fluctuations in the
radiation energy density, become noticeable. For times larger than those shown
in Fig. 3, these fluctuations lead to a code crash. Note that in these plots, the
floor temperature of the radiation field (as measured by its energy density,
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(a) (b)

(c) (d)

Fig. 3. Results showing radiation temperature as measured by the radiation energy
density (red) and material temperature (black) when using the original difference
formulation B = B(t) at various times. Note the large fluctuations in both radiation
and material temperature as the difference in material temperature between the
thick and thin regions increases.

aT 4) is set to zero. Negative excursions of the radiation energy density are
clipped in the figure, but do occur.

3.2.3 Generalized subtraction scheme

Instead of using a reference field that corresponds to a black body derived
from the material temperature in the optically thin region, we now choose B
in the thin region to be that of the thick region just to the right of xb, the
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(a) (b)

(c) (d)

Fig. 4. Results showing radiation temperature (red) and material temperature
(black) when using the reference field defined in Eq. (32) at various times. Note
the relatively small fluctuations of the radiation temperature as compared to Fig. 3,
as well as the stable material temperature profile of the slab.

position of the material interface.

B(x, t) =







B(xb, t0) if x < xb, t0 < t ≤ (t0 + ∆t)

B(x, t0) if x ≥ xb, t0 < t ≤ (t0 + ∆t)
(32)

The arguments of B are made explicit to show its dependence on position, as
well as time. This particular reference field imposes two slight modifications
to the sources shown in Section 2. First, since the reference field is constant in
space within the thin region, there are no gradient sources emanating within
this region. Second, since the reference field is continuous at the thin/thick
interface, there is no delta function source residing at this interface.
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Fig. 5. The same problem as Fig. 4, but after many time steps. Note that due to
the constant volumetric source in the thin region, the material temperature in this
region is 2.34 keV, well above the range of the figure. Also note the temperature
difference between the radiation field and material in the region labeled by δ in the
thick region.

As Fig. 4 shows, statistical variations of the radiation temperature as measured
by the radiation energy density (red), though still apparent, are much smaller
than in Fig. 3. Furthermore, solutions to the material temperature (black) are
stable. Indeed, with this choice of reference field, our code does not crash and
can run indefinitely. Figure 5 shows the radiation temperature and material
temperature after 800 time steps. Because of the constant volumetric heat
source in the thin region, the material temperature here is 2.34 keV, well
above the 1 keV range of the figure.

As seen from Figs. 4 and 5, the radiation temperature in the thin region
is slightly higher than the material temperature of the thick region at the
material interface xb. This difference in radiation temperatures is what drives
energy into the thick region. It is clear that the reference field defined in
Eq. (32) is a good choice, as the difference field in the thin region is relatively
small (but not zero).

Within the thick region the radiation temperature at the leading edge of the
Marshak wave is at first larger than the material temperature. As the wave
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Fig. 6. Similar to Fig. 5, but opacity in the thick region has been increased by an
order of magnitude (see text).

propagates, the temperatures relax to each other within a timescale trel intrin-
sic to the material, thus the radiation comes into equilibrium (locally) with
the material. As derived in Appendix A, trel is given by

trel =
1

βσc
, (33)

where

β =
4aT 3

ρCv

. (34)

For the parameters used in this problem, trel ∼ .5 shakes, which is consistent
with our results.

Since the material temperature is initially lower than the radiation temper-
ature at the foot of the Marshak wave in the thick region, and thus ‘lags’
the radiation temperature, there persists a region of width δ where the two
temperatures disagree, as shown in Fig. 5. We can estimate how the width of
this region, δ, scales with opacity σ. This can be seen by first noting that δ
can be approximated by [11]

δ ∼ trelvmw , (35)
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where vmw represents the velocity of the Marshak wave [12]

vmw(t) ∼ 1

2

√

κ

ρCvt
. (36)

For gray opacities, the coefficient of radiative heat conduction, κ, is given by

κ ≈ 4ca

3σ
T 3 . (37)

Combining these expressions gives

δ ∼ 1√
12β

√
ct σ3/2

, (38)

which shows that δ scales as σ−3/2. This suggests that as the medium becomes
thicker, the gap decreases (as expected). Figure 6 qualitatively supports this
statement, where a calculation analogous to the one presented in Fig. 5 is
shown, but the opacity in the thick region is increased by an order of magnitude
(σ =3000 cm−1). The gap in this case is too small to be seen in the figure.

4 Stability Analysis

The overwhelming importance of unconditional numerical stability demands
that transport calculations in the standard formulation for transport, Eqs. (1)
and (2), be done fully implicitly in time. The numerical stability of Monte
Carlo calculations is usually difficult to quantify, especially in optically thick,
diffusive regions. In such regions there are large emission and absorption terms
in the transport equation that nearly cancel, but their noise is additive. The
noise masks the signature of the instability, making comparison with a stability
analysis difficult. The code suddenly crashes when physical variables enter
unphysical territory. Was the problem that caused the crash an instability,
or just some other algorithmic fault? It can be hard to tell. The difference
formulation solved the noise problem, so it is appropriate to compare our
numerical results with theoretical calculations.

We restrict our analysis to optically thick zones and slab geometry. We also
assume no energy sources or sinks and we assume that the system is close
to equilibrium, in a diffusive regime. We give now qualitative arguments that
these conditions are the most unstable ones. Consider an interface between two
optically thick zones and assume that there is a small temperature difference
between them. (The temperature difference may even be caused by Monte
Carlo noise.) We will call the hotter one zone 1 and the colder one zone 2.
The difference in temperature causes a flux of radiation to flow from zone 1
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Fig. 7. Initial conditions for performing stability analysis. Periodic boundary condi-
tions are used, photons that exit the problem at x = 2∆x re-enter at x = 0, and vice
versa. The dotted line is the interpolation of Φ between zone centers that is used
for the gradient source term, the other source terms use the constant representation
of Φ within a zone. The dashed line at Φ0 is the equilibrium energy density. The
deviations from it are small. There is no initial difference field.

to zone 2. When the zones are optically thick, the flow does not depend on
the conditions of the other zones. Also, all photons that are emitted in one
of the zones – and penetrate into the other zone – are absorbed there. Let us
consider what happens in one time step. In reality, the temperature difference
diminishes and so does the flux. In our discretization schemes the conditions
in each zone are constant during the time step, so radiation flows at a steady
rate. If the time step is long enough, and the heat capacity of zones 1 and
2 are small enough, zone 2 can get hotter than zone 1, so the temperature
difference becomes oscillatory. The absolute temperature difference may even
increase in a time step: this is the cause of numerical instability.

Our experience with the Monte Carlo code implementations discussed in this
paper, consistent with the description above, is that short wavelength instabili-
ties dominate. We perform our analysis in the optically thick limit, employing
a two zone problem with periodic boundary conditions, expecting that we
can capture the behavior we observe. Initial conditions are shown in Fig. 7.
The initial difference field is zero. It is useful to write Φ1 = Φ0 + ∆Φ1 and
Φ2 = Φ0 + ∆Φ2, as we are interested in small perturbations, |∆Φi| ≪ Φ0,
with the optically thick limit providing the constraints 1/σ∆x ≪ 1 and
1/σc∆t ≪ 1. These constraints allow for a simplified, but by no means simple,
derivation of the sources and their contributions to the energy balance of the
(two) zones. The periodic boundary conditions imply that all particles that
exit to the right of x = 2∆x immediately enter at x = 0, and vice versa for
particles exiting to the left.

The stability analysis, for each case that we consider, is organized as follows.
For each source term appearing in the transport equation, we calculate its
energy deposition in the zone in which the particles were born, as well as in
the adjacent zone. Because we are in the thick limit, with e−σ∆x ≈ 0, radiation
does not propagate further than into the zone adjacent to its birth zone and we
neglect this possibility. Energy depositions, and holdover energy (the photons
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still in flight at the end of the time step), can be calculated to all orders in
1/σ∆x and 1/σc∆t, as we do in Appendix B, but we drop higher order terms
when appropriate to simplify the analysis. Given the energy depositions from
the source terms, the energy equation can be solved for ∆Φi(t0 +∆t) in terms
of ∆Φi(t0) and then their ratio can be considered.

Stability is obtained if
∣

∣

∣

∣

∣

∆Φi(t0 + ∆t)

∆Φi(t0)

∣

∣

∣

∣

∣

< 1 , (39)

assuring that the perturbation shrinks with time. The above constraint does
not imply monotonic temporal behavior. This occurs only if

0 ≤ ∆Φi(t0 + ∆t)

∆Φi(t0)
< 1 . (40)

To minimize clutter we introduce the following notation:

εx ≡
1

σ∆x
, (41)

εt ≡
1

σ∆tc
,

γ ≡ c∆t

∆x
. (42)

Thus the assumptions that 1/σ∆x ≪ 1 and 1/σc∆t ≪ 1 are equivalent to
εx ≪ 1 and εt ≪ 1, respectively.

We now analyze the ratios given by Eq. (39) and Eq. (40) for our differencing
schemes. We begin by first formally integrating Eq. (10) from t0 to t0+∆t and
xi to xi +∆x, where xi is the left edge of zone i. Using the piecewise-constant
discretization of the material properties, this gives

∆x(Ei(t0 + ∆t) − Ei(t0)) = 2π
∫ xi+∆x

xi

dx
∫ t0+∆t

t0
dt
∫

dν dµ σD

− 2π∆t∆x
∫

dν dµ σ(Bi − Bi) . (43)

Here Ei = ρCvTi is the piecewise-constant value of the material energy and
σ(Bi − Bi) is the piecewise-constant value of the remainder source term in
zone i. Since we assume a gray opacity, the right hand side of Eq. (43) can be
further simplified by noting that

∫

dν dµ (Bi − Bi) =
c

2π
(Φi − Φi) =

c

2π
(∆Φi − ∆Φi) ,

where Φ = aT 4, ∆Φ = Φ − Φ0 and ∆Φ = Φ − Φ0, and where Φ is the energy
density associated with the reference field, B.
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Since we are considering small deviations from Φ0, we expand (linearize) the
left hand side of Eq. (43) about Φ0, giving

Ei(t0 + ∆t) − Ei(t0) ≈
1

β0
(∆Φi(t0 + ∆t) − ∆Φi(t0)) , (44)

where β0 = 4aT 3
0 /ρCv, ρ is the material density and Cv is the constant volume

specific heat. Combining these expressions into Eq. (43) gives

∆Φi(t0 + ∆t) − ∆Φi(t0) ≈
β0

∆x
2π
∫ xi+∆x

xi

dx
∫ t0+∆t

t0
dt
∫

dν dµ σD

− β0∆tσc(∆Φi(t0 + ∆t) − ∆Φi(t0 + ∆t)) . (45)

We now divide both sides of Eq. (45) by ∆Φi(t0) to obtain the form of our
stability criterion,

∆Φi(t0 + ∆t)

∆Φi(t0)
≈ 1 +

β0

∆x∆Φi(t0)

(

2π
∫ xi+∆x

xi

dx
∫ t0+∆t

t0
dt
∫

dν dµ σD

)

− β0∆tσc

∆Φi(t0)
(∆Φi(t0 + ∆t) − ∆Φi(t0 + ∆t)) . (46)

What remains is to show how the integral (within the large parentheses) on
the right hand side of Eq. (46) contributes to the energy deposition of zone i,
where D is due to the sources that occur during the time step. We must also
show that the holdover energy due to these sources that remains at the end
of the time step is either small enough to be ignored, or we must explicitly
handle it in the stability analysis.

4.1 Original difference formulation using B = B(t0 + ∆t)

For the sake of completeness, and in order to show how the various expres-
sions are born out, we first perform our analysis on the original difference
formulation as described in [7] and given by Eqs. (6) and (7). Here the ref-
erence field B is the end-of-time-step value of B = B(t0 + ∆t). In this case,
∆Φi(t0 + ∆t) = ∆Φi(t0 + ∆t) and Eq. (46) becomes

∆Φi(t0 + ∆t)

∆Φi(t0)
≈ 1 +

β0

∆x∆Φi(t0)

(

2π
∫ xi+∆x

xi

dx
∫ t0+∆t

t0
dt
∫

dν dµ σD

)

.

(47)
The implicit sources that contribute to the energy deposition into the material
at zone i, as represented under the integral in Eq. (47), are

21



time-derivative source : −δ(t − t0)
1

4π
[Φi(t0 + ∆t) − Φi(t0)] ,

gradient source : − µc

4π∆x
[Φi+1(t0 + ∆t) − Φi(t0 + ∆t)] , (48)

where, since we are dealing with gray opacities, the integral over the frequency
ν has already been performed. The gradient source is the source in the dual
zone between the center of zone i and the center of zone i + 1, as shown by
the dotted line in Figure 7.

The time-derivative sources are distributed uniformly within each zone i. The
gradient that would otherwise exist only on zone boundaries is distributed
uniformly between zone centers, as if being produced by the dotted line in-
terpolation shown in Figure 7. Furthermore, all time-derivative particles are
born at the beginning of the time step t0, whereas the gradient sources are
born uniformly in time from t0 to t0 + ∆t.

The calculation of the energy deposition due to these sources, and any holdover
energy at the end of the time step, is tedious and is carried out in detail for
each source type in Appendix B. For the time derivative source, the energy de-
position in the birth zone for a source of strength A is given by Eq. (B.6), while
the energy deposition in the adjacent zone is given by Eq. (B.7). Substituting
the strength of the time derivative source in zone i,

− 1

4π
[Φi(t0 + ∆t) − Φi(t0)] , (49)

we obtain for the energy deposition in zone i due to the time derivative sources,

∆x
(

1

2
ǫx − 1

)

[Φi(t0 + ∆t) − Φi(t0)]

− ∆xεx

2
[Φi+1(t0 + ∆t) − Φi+1(t0)] . (50)

Because these sources are emitted at the beginning of the time step there is
no holdover energy from the time derivative sources to account for. With an
eye to later results, we add and subtract Φ0, accordingly, so that the energy
deposition in zone i from the time derivative source becomes

∆x
(

1

2
ǫx − 1

)

[∆Φi(t0 + ∆t) − ∆Φi(t0)]

− ∆xεx

2
[∆Φi+1(t0 + ∆t) − ∆Φi+1(t0)] . (51)

The energy deposition, in zone 1, for a gradient source with strength Aµ in
the region ∆x/2 < x < 3∆x/2, and −Aµ elsewhere, is given by Eq. (B.24),
while the total holdover due to this source in zone 1 is given by Eq. (B.25).
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Substituting the strength, A, for this source

− c

4π∆x
[Φ2(t0 + ∆t) − Φ1(t0 + ∆t)] , (52)

and considering the fact that the absorbed energy for zone 2 is that of zone 1
with the sign reversed, the energy absorbed in zone i is

−2c

3
∆tεx(2εt − 1) [Φi+1(t0 + ∆t) − Φi(t0 + ∆t)] . (53)

Again, adding and subtracting Φ0, we obtain for the absorbed energy

−2c

3
∆tεx(2εt − 1) [∆Φi+1(t0 + ∆t) − ∆Φi(t0 + ∆t)] . (54)

Similarly, the holdover energy in zone i is

2c

3
[∆Φi+1(t0 + ∆t) − ∆Φi(t0 + ∆t)] ∆tεtεx . (55)

Unlike the time derivative source that has no holdover, the gradient source
has a holdover containing a factor εtεx. This factor is second order small, and
we could complete the stability analysis by ignoring these second order terms,
but the presence of the εx factor indicates that it came from a position just
upstream of a zone interface, and all holdovers come from sources generated
near the end of the time step. The holdover will be absorbed at the beginning
of the next time step, and it will be absorbed in the zone where it resides
as it has just entered it. With that understanding, we now have the energy
deposited by the holdover from the prior time step,

2c

3
[∆Φi+1(t0) − ∆Φi(t0)]∆tεtεx . (56)

Because we have linearized, via Eq. (44), the sum of the holdovers in each
zone, Eq. (56), is zero, and our algorithm is energy conserving, any shift in
zone i must be accompanied by an equal, but opposite shift in zone i+1. That
is,

∆Φi+1 = −∆Φi . (57)

The energy deposited by the D field during the time step is the sum of Eqs.
(51), (54) and (56). Using Eq. (57), the sum of the energy depositions in zone
i is

(

∆x(εx − 1) +
4c

3
∆tεx(2εt − 1)

)

∆Φi(t0 + ∆t)

+
[

∆x(1 − εx) −
4c

3
∆tεtεx

]

∆Φi(t0) . (58)
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Substituting the sum for the energy deposition in zone i, Eq. (58), into Eq. (47)
(replacing the integral in the large parentheses including the factor of 2π), and
performing some algebra, gives

∆Φi(t0 + ∆t)

∆Φi(t0)
≈

1 + β0

[

1 − εx − 4
3
γεtεx

]

1 + β0

(

1 − εx + 4
3
γεx(1 − 2εt)

) . (59)

The role of the ≈ sign is to remind us that we have linearized the treatment of
the material energy via Eq. (44), and that we have dropped terms with factors
e−σ∆x, or e−σc∆t, in the computation of energy depositions in Appendix B, but
we have otherwise carried all orders of εt and εx. Given that β0 is positive and
that εt and εx are small positive quantities, the ratio is positive and less than
one. The method is therefore unconditionally stable and monotonic in time.

4.2 Generalized subtraction using B = B(to)

Because of the subtraction of the value of B at the beginning of the time step,
Eq. (46) becomes

∆Φi(t0 + ∆t)

∆Φi(t0)
≈ 1 +

β0

∆x∆Φi(t0)

(

2π
∫ xi+∆x

xi

dx
∫ t0+∆t

t0
dt
∫

dνdµσD

)

− β0∆tσc

∆Φi(t0)
(∆Φi(t0 + ∆t) − ∆Φi(t0)) . (60)

The sources are now

time-derivative source : −δ(t − t0)
1

4π
[Φi(t0) − Φi(t0 − ∆t)] ,

gradient source : − µc

4π∆x
[Φi+1(t0) − Φi(t0)] ,

remainder source :
cσ

4π
[Φi(t0 + ∆t) − Φi(t0)] . (61)

where we have again integrated over frequency as we are dealing with gray
opacities. Only the remainder source depends upon the unknown Φ(t0 + ∆t).

Comparing Eq. (61) to Eq. (48), the time derivative and gradient sources are
obtained by making the replacement t0 → t0 − ∆t. The energy deposition
from the time derivative source is obtained by making this same replacement
in Eq. (51),

∆x
(

1

2
ǫx − 1

)

[∆Φi(t0) − ∆Φi(t0 − ∆t)]

− ∆xεx

2
[∆Φi+1(t0) − ∆Φi+1(t0 − ∆t)] . (62)
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The energy deposition from the gradient source is obtained by making this
replacement in Eq. (54),

−2c

3
∆tεx(2εt − 1) [∆Φi+1(t0) − ∆Φi(t0)] . (63)

The holdover energy in zone i, from the gradient source in the prior time step,
is obtained by making this replacement in Eq. (56),

2c

3
[∆Φi+1(t0 − ∆t) − ∆Φi(t0 − ∆t)] ∆tεtεx . (64)

We are left with the remainder source of Eq. (61). This source is isotropic and
uniform in both space and time. The energy deposited in the birth zone is
given by Eq.(B.14), using

cσ

4π
[∆Φi(t0 + ∆t) − ∆Φi(t0)] (65)

for the source strength, A. We have added and subtracted Φ0 in order to get
the source strength in terms of ∆Φi. The energy deposited in zone i due to
the remainder source from zone i, then, is

cσ

2
[∆Φi(t0 + ∆t) − ∆Φi(t0)]∆t∆x (2 − 2εt − εx + 2εtεx) . (66)

Similarly, using Eq. (B.13), the holdover energy in zone i due to the remainder
source from zone i, from the prior time step, is

cσ

2
[∆Φi(t0) − ∆Φi(t0 − ∆t)] ∆t∆xεt (2 − εx) . (67)

The energy deposited in zone i due to the remainder source born in zone i+1
is given by Eq. (B.12), substituting A,

cσ

2
[∆Φi+1(t0 + ∆t) − ∆Φi+1(t0)]∆t∆xεx (1 − 2εt) . (68)

The holdover in zone i due to the remainder source born in zone i+1 is given
by Eq. (B.11), substituting A for the prior time step,

cσ

2
[∆Φi+1(t0) − ∆Φi+1(t0 − ∆t)] ∆t∆xεtεx . (69)

The assertion that ∆Φi+1 = −∆Φi does not come as easily as it did for Section
4.1, but the argument that the dynamics preserves this relationship goes as
follows. We have an initial condition that ∆Φi+1(0) = −∆Φi(0). There is
no time derivative source for the first time step. The energy deposition from
the gradient source will drive the zone with the positive ∆Φ down, and the
zone with the negative ∆Φ up, by the same amount. These changes produce
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equal, and opposite, remainder sources in each zone, with equal and opposite
holdovers. At the end of the time step, therefore, the self consistent solution
will be ∆Φi+1(∆t) = −∆Φi(∆t), with the holdover having opposite sign for
each zone. For the second time step, we have a time derivative source that
derives from the equal and opposite change in ∆Φ that transpired in the first
time step. When this, and the holdover from the prior time step, is thrown
in to the dynamic that we have already described for the first time step, the
relationship, ∆Φi+1 = −∆Φi, is still preserved, and by induction, for all time
steps.

The energy absorbed in zone i, dropping terms proportional to εtεx so that
we need not worry with holdover in zone i that escapes to zone i + 1 before
it is absorbed, is the sum of Eqs. (62), (63), (66), (67) and (68). The sum of
these terms, using ∆Φi+1 = −∆Φi and dropping terms proportional to εtεx,
is

∆x (ǫx − 1) [∆Φi(t0) − ∆Φi(t0 − ∆t)]

− 4c

3
∆tεx∆Φi(t0)

+
cσ

2
[∆Φi(t0 + ∆t) − ∆Φi(t0)] ∆t∆x (2 − 2εt − εx)

+ cσ [∆Φi(t0) − ∆Φi(t0 − ∆t)] ∆t∆xεt

− cσ

2
[∆Φi(t0 + ∆t) − ∆Φi(t0)] ∆t∆xεx . (70)

With an eye for what is to come, we factor out ∆Φi(t0 + ∆t), ∆Φi(t0), and
∆Φi(t0 −∆t), obtaining the energy deposition in zone i, the integral in paren-
theses in Eq.(60), in a form useful for what will follow below,

(−∆x + c∆t(σ∆x − 1))∆Φi(t0 + ∆t)

+
(

∆x(1 + εx) + c∆t(1 − 4εx

3
− σ∆x)

)

∆Φi(t0)

− ∆xεx∆Φi(t0 − ∆t) . (71)

Substituting, and using c∆t/∆x = γ, we obtain for Eq. (60),

(1 + β0(1 + γ))
∆Φi(t0 + ∆t)

∆Φi(t0)

− 1 − β0

(

1 + εx + γ(1 − 4εx

3
)
)

+ β0εx
∆Φi(t0 − ∆t)

∆Φi(t0)
≈ 0 . (72)

Unlike in the previous section where the ratio ∆Φ(t0 + ∆t)/∆Φ(t0) could be
solved for directly, the dependence on ∆Φi(t0 − ∆t) requires us to solve a
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recurrence relation. A detailed solution, given the initial conditions, can be
solved for, but our interest is only in learning whether the solution is growing
or shrinking, asymptotically. To this end, we make the substitutions

∆Φi(t0 + ∆t)

∆Φi(t0)
= α ,

∆Φi(t0 − ∆t)

∆Φi(t0)
=

1

α
,

in Eq. (72), obtaining,

(1 + β0(1 + γ))α − 1 − β0

(

1 + εx + γ(1 − 4εx

3
)
)

+ β0εx
1

α
≈ 0 . (73)

The solution for α requires solving a quadratic equation. Thus there are two
solutions. To facilitate the presentation, we expand the two solutions to order
εx,

α =







1 − εx
4
3

β0γ
1+β0(2+γ)

+ O(ε2
x, εxεt) ,

εx
β0

1+β0(1+γ)
+ O(ε2

x, εxεt) .
(74)

The solutions above represent the two allowed ‘modes’ of the recurrence re-
lation, which characterize the long-time behavior of this system. A general
solution to the recurrence equations will involve a linear combination of both
modes. α is positive and less than 1 for both modes, indicating that the general
solution is stable and monotonic in time.

4.3 Talyor expansion of σ(B − B)

We now consider the case of fully explicit sources, wherein we approximate
the implicit remainder source by its explicit first order Taylor expansion,

σ
(

B(t) − B(t)
)

= σ (B(t) − B(t − ∆t))

≈ σ∆t
∂B(t)

∂t
(∆t ≪ trel) . (75)

The lack of any implicit sources makes this discretization method susceptible
to instability, which is born out in our stability analysis below.

The sources in this case become
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time derivative source : −δ(t − t0)
1

4π
[Φi(t0) − Φi(t0 − ∆t)] ,

gradient source : − µc

4π∆x
[Φi+1(t0) − Φi(t0)] ,

explicit remainder source :
cσ

4π
[Φi(t0) − Φi(t0 − ∆t)] . (76)

It is easy to see that Eq. (46) becomes

∆Φi(t0 + ∆t)

∆Φi(t0)
≈ 1 +

β0

∆x∆Φi(t0)

(

2π
∫ xi+∆x

xi

dx
∫ t0+∆t

t0
dt
∫

dνdµσD

)

− β0∆tσc

∆Φi(t0)
(∆Φi(t0) − ∆Φi(t0 − ∆t)) . (77)

Comparing Eq. (76) to Eq. (61), we see that the energy deposition is obtained
by making the substitution (Φi(t0 + ∆t)−Φi(t0)) → (Φi(t0)−Φi(t0 −∆t)) in
the terms arising from the remainder source (those with an explicit factor of
σ) in Eq. (70),

∆x (ǫx − 1) [∆Φi(t0) − ∆Φi(t0 − ∆t)]

− 4c

3
∆tεx∆Φi(t0)

+
cσ

2
[∆Φi(t0) − ∆Φi(t0 − ∆t)] ∆t∆x (2 − 2εt − εx)

+ cσ [∆Φi(t0 − ∆t) − ∆Φi(t0 − 2∆t)] ∆t∆xεt

− cσ

2
[∆Φi(t0) − ∆Φi(t0 − ∆t)] ∆t∆xεx . (78)

Substitution of this energy deposition into Eq. (77) leads to a cubic equation
that we must find the roots of in order to obtain the growth coefficients. To
make understanding the results less problematic, we consider the case that
εt << εx, or equivalently, large γ. Dropping the terms proportional to εt, we
obtain

∆x (ǫx − 1) [∆Φi(t0) − ∆Φi(t0 − ∆t)]

− 4c

3
∆tεx∆Φi(t0)

+
cσ

2
[∆Φi(t0) − ∆Φi(t0 − ∆t)] ∆t∆x (2 − εx)

− cσ

2
[∆Φi(t0) − ∆Φi(t0 − ∆t)] ∆t∆xεx . (79)

Collecting coefficients of ∆Φi(t0) and ∆Φi(t0 − ∆t) gives,

(

∆x(εx − 1) − c∆t(1 +
4

3
εx − σ∆x)

)

∆Φi(t0)

(∆x(1 − εx) + c∆t(1 − σ∆x))∆Φi(t0 − ∆t) . (80)
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Substituting this for the energy deposition term in Eq. (77) (the integral in
the parentheses) we obtain,

∆Φi(t0 + ∆t)

∆Φi(t0)
+ β0

(

1 + γ + εx

(

4

3
γ − 1

))

− 1

+ β0(εx − γ − 1)
∆Φi(t0 − ∆t)

∆Φi(t0)
≈ 0 . (81)

As in the prior section, we make the substitutions

∆Φi(t0 + ∆t)

∆Φi(t0)
= α ,

∆Φi(t0 − ∆t)

∆Φi(t0)
=

1

α
,

in Eq. (81), obtaining,

α + β0

(

1 + γ + εx

(

4

3
γ − 1

))

− 1 + β0(εx − γ − 1)
1

α
≈ 0 . (82)

We expand the solutions for α to first order in ǫx, obtaining

α =







1 − εx
4
3

β0γ
1+β0(1+γ)

+ O(ε2
x, εxεt) ,

−β0(1 + γ) + εx
β0(6−2β0(γ(1+4γ)−3)

6(1+β0(1+γ))
+ O(ε2

x, εxεt) .
(83)

One of the modes will be unstable when

β0 (1 + γ) > 1 ,

or, equivalently, when

γ =
c∆t

∆x
>

(

1

β0
− 1

)

. (84)

In Figure 8, we plot ∆t = ∆x(β−1
0 − 1)/c (the black line) for the particular

parameters labeled in the figure. Runs with randomly sampled initial tempera-
tures, T0, and time step sizes, ∆t, were performed with initial conditions shown
in Fig. 7. Stability was determined by examining the growth, or shrinkage, of
an initial perturbation in Φ for a two zone problem with periodic boundary
conditions. Runs that were stable are plotted in green, whereas unstable runs
are shown in red. Note that the demarcation between stable and unstable is
well predicted by the black line.
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Fig. 8. Scatter plot showing numerical results that demarcate stable, green, and
unstable, red, runs. The solid black line is the derived stability criterion given by
Eq. (84). The zone size, ∆x, is 2.5cm.

5 Conclusion

In this report, we have evaluated generalizations of the difference formulation
that use reference fields other than the black body corresponding to the im-
plicitly differenced local material temperature. We have shown that by using
the black body corresponding to the material temperature at the beginning of
the time step, the remainder of the thermal emission term is small when the
problem is slowly varying. This provides a material energy equation that is
amenable to a fast iterative solution and addresses the cost associated with the
Newton-Raphson solve that is required in the original difference formulation.

In problems with optically thin regions adjacent to optically thick ones, can-
cellation of the gradient source terms can cause high levels of noise in Monte
Carlo solutions, with attendant problem crashes. To resolve this problem we
have explored using the black body corresponding to the adjacent optically
thick region for the reference field in the optically thin region, finding that it
removes the noise induced problem crashes.

In addition to numerical results, we have explored the stability of our dis-
cretizations of the difference formulation in the optically thick limit. We find
our generalized difference formulation to be unconditionally stable.
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A Derivation of relaxation time trel of material

Here we make the assumption that the radiation field is held constant, while
the material temperature, Tmat, is allowed to change. The change in material
energy is given by

∂Emat

∂t
=

1

β

∂Φmat

∂t
=
∫

dν dΩ (I − Bmat(t)) , (A.1)

where

β =
4a1/4

ρCv
T 3

mat .

For grey opacities, the right hand side of Eq. (A.1) can be expressed as

∫

dν dΩ (I − Bmat(t)) = cσ [Φrad − Φmat(t)] ,

where we have identified the constant radiation density with Φrad = a T 4
rad.

Let us further assume that Trad is not too different from Tmat.

The solution to Eq. (A.1) is simply

Φmat(t) = Φrad − C e−βσ c t ,

where C is some constant that depends on the initial conditions. The argument
of the exponential defines the relaxation time of the material, giving us the
desired result

trel =
1

βσc
.

B Energy Depositions

Here we derive the absorbed energy and the holdover energy remaining at
the end of the time step (photons still in flight) for the source types required
by the stability analysis of Section 4. We consider sources of strength A, or
µA, distributed in time and space as required for the discretizations that we
consider. These results are used as generic expressions, substituting the actual
source strength, to compute the energy deposition and holdover energy for the
situations covered in the stability analysis.

The energy depositions are for a two zone problem with periodic boundary
conditions where each zone is of width ∆x, having an opacity σ, with the source
of the D field emitted and propagated for the duration of the time step, ∆t.
We are interested in the thick limit where σ∆x >> 1 and σc∆t >> 1; and,
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Fig. B.1. A depiction of a uniform isotropic source of strength A in one zone. The
region shaded yellow is marking the zone with the source. The x axis is the position
through the slab, while the unlabeled y axis is the position along the slab. A Monte
Carlo particle born at position x, traveling in the direction shown by the arrow,
travels a distance s = (∆x−x)/µ before escaping into the adjacent zone, where µ is
the cosine of the particle direction with respect to perpendicular direction through
the slab. Periodic boundary conditions are used. A Monte Carlo particle exiting the
problem at x = 2∆x enters again at x = 0, and vice versa.

equivalently, εx ≡ 1/σ∆x << 1 and εt ≡ 1/σ∆tc << 1. We ignore terms
containing e−σ∆x, or e−σc∆t, as exponential factors as these are smaller than
any power of εx or εt.

We want, for each source term, the absorbed energy and the holdover energy
in each zone. The general strategy that we will use is to compute the total
energy emitted by the source in a zone, the total holdover from this emitted
energy in both zones, the amount of emitted energy that passes through the
zone boundary into the adjacent zone, and then finally its holdover. From
these, we can then obtain the energy absorbed and the holdover in each zone
by subtraction.

Formally, we want the energy deposition from Eq (43),

2π
∫ xi

xi−1

dx
∫ t0+∆t

t0
dt
∫

dν dµ σD . (B.1)

It is easy to show that for a D field represented by Monte Carlo particles of en-
ergy weight w0e

−σs, where s is the path length traveled, the energy deposition
is 2π times the energy weight lost by the particle. It is from this perspective
that we will calculate the energy deposition and holdover energy.

B.1 Uniform, in space, isotropic source of strength A emitted at the beginning
of the time step.

To compute the energy deposition and holdover energy in each zone for an
isotropic source of strength A emitted at the beginning of the time step, we
consider the right moving, µ ≥ 0, component of this source as depicted in
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Fig. B.1. Using periodic boundary conditions, the additional influence of the
left moving component of the source is obtained by multiplying by a factor of
2. The total emitted energy is

4π
∫ 1

0
dµ
∫ ∆x

0
dxA = 4πA∆x . (B.2)

The holdover energy, without regard for the zone it is in, is

4π
∫ 1

0
dµ
∫ ∆x

0
dxAe−σc∆t = 4πA∆xe−σc∆t ≈ 0 , (B.3)

and as it contains a factor of e−σc∆t it is taken to be zero for the purposes of
this analysis. In what follows below in this appendix, we will use the ≈ sign to
indicate that we have dropped terms including such a factor, but we otherwise
carry all orders in εx and εt. We show this explicitly in some of the earlier
integrals that are evaluated, but in the more complicated cases terms with
factors of this sort are evaluated and dropped during intermediate integration
steps.

As the path length to reach the adjacent zone is (∆x − x)/µ, photons born
at x < ∆x − cµ∆t do not have time to reach the next zone. The energy that
escapes into the adjacent zone is

4π
∫ 1

0
dµ
∫ ∆x

∆x−cµ∆t
dxAe−σ(∆x−x)/µ =

2πA

σ
(1 − e−σc∆t) ≈ 2πA∆xεx . (B.4)

The holdover in the adjacent zone is

4π
∫ 1

0
dµ
∫ ∆x

∆x−cµ∆t
dxAe−σc∆t = 2πAc∆te−σc∆t ≈ 0 . (B.5)

As there is no holdover, the energy absorbed in the birth zone is obtained by
subtracting the escaped energy, Eq. (B.4), from the emitted energy, Eq. (B.2),

2πA∆x(2 − εx) . (B.6)

The energy absorbed in the adjacent zone is simply the energy that escaped
into it,

2πA∆xεx . (B.7)

B.2 Uniform, in both space and time, isotropic source of strength A.

To compute the energy deposition and holdover energy in each zone for an
isotropic source of strength A emitted uniformly during the time step, we
again consider the right moving, µ ≥ 0 component of this source as depicted in
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Fig. B.1. Using periodic boundary conditions, the influence of the left moving
component of the source is again obtained by multiplying by a factor of 2.
The emitted energy is

4π
∫ 1

0
dµ
∫ ∆t

0
dt
∫ ∆x

0
dxA = 4πA∆t∆x . (B.8)

The holdover energy, without regard for which zone it is in, is

4π
∫ 1

0
dµ
∫ ∆t

0
dt
∫ ∆x

0
dxAe−σc(∆t−t) ≈ 4πA∆t∆xεt . (B.9)

As the path length to reach the adjacent zone is (∆x−x)/µ, photons born at
x < ∆x− cµ(∆t− t) do not have time to reach the adjacent zone. The energy
that escapes into the adjacent zone is

4π
∫ 1

0
dµ
∫ ∆t

0
dt
∫ ∆x

∆x−cµ(∆t−t)
dxAe−σ(∆x−x)/µ ≈ 2πA∆t∆xεx (1 − εt) .

(B.10)
The holdover in the adjacent zone is

4π
∫ 1

0
dµ
∫ ∆t

0
dt
∫ ∆x

∆x−cµ(∆t−t)
dxAe−σc(∆t−t) ≈ 2πA∆t∆xεtεx . (B.11)

The energy absorbed in the adjacent zone is obtained by subtracting the
holdover, Eq. (B.11), from the energy that escapes into the zone, Eq. (B.10).

2πA∆t∆xεx (1 − 2εt) (B.12)

The holdover energy in the birth zone is obtained by subtracting the holdover
in the adjacent zone, Eq. (B.11), from the total holdover, Eq. (B.9).

2πA∆t∆xεt (2 − εx) (B.13)

The energy absorbed in the birth zone is obtained by subtracting the energy
that escaped into the adjacent zone, Eq. (B.10), and the holdover energy in
the birth zone, Eq. (B.13), from the total energy emitted, Eq. (B.8).

2πA∆t∆x (2 − 2εt − εx + 2εtεx) (B.14)

B.3 Interpolated derivative source of strength Aµ.

The configuration of this source term is shown in Fig. B.2. There are four
half zones, each with a strength of Aµ, or −Aµ, as the case may be. We will
assemble the energy deposition and holdover by considering two cases, a half
zone just upstream of a zone boundary, and a half zone just downstream of

34



Zone 1 Zone 2

H1 H2 H3 H4

r
Φ1hhhhhhhhhhr

Φ2(((((
(((((

0 ∆x 2∆x

−Aµ Aµ Aµ −Aµ

x
t�

�
��

Fig. B.2. A depiction of the derivative source obtained by interpolating between
zone centered values of Φ for the purpose of calculating the derivative, leading to
a constant source strength of Aµ, or −Aµ, in half zones, as the case may be. The
entire problem is shown, but we divide the problem domain into half zones in order
to exploit symmetry when assembling the result. The labeled yellow regions mark
the constant source in a given half zone, indicating the sign. A Monte Carlo particle
born at position x in the half zone, H2, traveling in the direction shown by the
arrow, travels a distance s = (∆x − x)/µ before escaping into the adjacent zone. A
similarly directed Monte Carlo particle born in the half zone, H3, just to the right
of the interface between zones is fully absorbed before it reaches the next zone.

a zone boundary, and then assemble the energy deposition and the holdover
energy by considering the symmetries involved with the periodic boundary
conditions.

The right moving energy emitted from a half zone of source strength Aµ is

2π
∫ 1

0
dµ
∫ ∆t

0
dt
∫ ∆x/2

0
dxAµ =

1

2
πA∆t∆x , (B.15)

while the left moving energy from the same source has the opposite sign. The
total holdover of this right moving emitted energy, without regard for the zone
that it is in, is

2π
∫ 1

0
dµ
∫ ∆t

0
dt
∫ ∆x/2

0
dxAµe−cσ(∆t−t) ≈ 1

2
πA∆t∆xεt . (B.16)

Specializing to a half zone just upstream of an interface between zones, the
energy that crosses through the zone interface is

2π
∫ 1

0
dµ
∫ ∆t

0
dt
∫

1
2
∆x

1
2
∆x−cµ(∆t−t)

dxAµe−σ(
1
2
∆x−x)/µ ≈ 2

3
πA∆t∆xεx(1 − εt) .

(B.17)
The holdover from the energy that crosses the interface between zones is

2π
∫ 1

0
dµ
∫ ∆t

0
dt
∫

1
2
∆x

1
2
∆x−cµ(∆t−t)

dxAµe−cσ(∆t−t) ≈ 2

3
πA∆t∆xεtεx . (B.18)

The energy absorbed from an adjacent upstream half zone is given by sub-
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tracting the holdover energy, Eq. (B.18), from the energy that crossed into the
zone, Eq. (B.17),

2

3
πA∆t∆xεx(1 − 2εt) . (B.19)

The holdover in the birth zone is obtained by subtracting the holdover from
the energy that crossed the interface between zones, Eq. (B.18), from the total
holdover, Eq. (B.16),

πA∆t∆xεt

(

1

2
− 2

3
εx

)

. (B.20)

The energy absorbed in the birth zone is obtained by subtracting the energy
that passed through the zone interface, Eq. (B.17), and the holdover in the
birth zone, Eq. (B.20), from the energy emitted, Eq. (B.15),

πA∆t∆x
(

1

2
− 1

2
εt −

2

3
εx +

4

3
εtεx

)

. (B.21)

Considering a half zone just downstream of an interface between zones, no
Monte Carlo particles make it through the next half zone and therefore into
the next zone, because they pick up a factor e−σ∆x/µ ≈ 0. In this case the total
holdover is restricted to the birth zone and, therefore, Eq. (B.16) becomes the
holdover in the birth zone,

1

2
πA∆t∆xεt . (B.22)

The energy absorbed in the birth zone is is the energy emitted, Eq. (B.15),
minus the holdover, Eq. (B.16),

1

2
πA∆t∆x(1 − εt) . (B.23)

We now have, for a half zone just upstream of an interface between zones: the
downstream energy absorbed in the birth zone, Eq. (B.21), the holdover in the
birth zone, Eq. (B.20), the energy absorbed in the adjacent zone, Eq. (B.19),
and the holdover in the adjacent zone, Eq. (B.18). For a half zone just down-
stream of an interface between zones: the energy absorbed in the birth zone
is Eq. (B.23), while the holdover energy in the birth zone is Eq. (B.22). Re-
turning to Fig. B.2, we can now tabulate the energy depositions to zone 1,
progressing from H1 to H4 for right moving, and then the left moving, de-
positions, respectively. Each term is shown in Table B.1. The total energy
deposition in zone 1 is the sum of these terms.

8

3
πA∆t∆xεx(2εt − 1) (B.24)

Similarly, we tabulate the holdover energy in zone 1 due to the sources in each
half zone in Table B.2. The total holdover energy in zone 1 is the sum of these
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H1 H2 H3 H4

right -(B.23) (B.21) 0 -(B.19)

left (B.21) -(B.23) -(B.19) 0

Table B.1
The contributions to the energy deposition in zone 1 due to the source in each
half zone, as arranged in Fig. B.2. The sign in the table entry is the sign of the
contribution to the energy deposition, relative to the sign of the indicated expression.
The rows labeled right and left are due to the right moving, and left moving sources,
respectively.

H1 H2 H3 H4

right -(B.22) (B.20) 0 -(B.18)

left (B.20) -(B.22) -(B.18) 0

Table B.2
The contributions to the holdover energy in zone 1 due to the source in each half
zone, as arranged in Fig. B.2. The sign in the table entry is the sign of the con-
tribution to the holdover energy, relative to the sign of the indicated expression.
The rows labeled right and left are the contributions due to right moving, and left
moving sources, respectively.

terms.

−8

3
πA∆t∆xεtεx (B.25)

Considering the periodic boundary conditions, the absorbed energy and the
holdover energy in zone 2 has the opposite sign.
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